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Abstract

Compton scattering in dense electron gases is
reviewed. The processes of Compton scattering along with
a scattering inhibition factor are incorporated into the
development of an analytical expression for the scattering
kernel. This kernel is then used to compute angle averaged
Compton cross sections for electron gases of various tempera-

tures and number densities.
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I. Introduction
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- Background b
This report approaches the treatment of Compton b

scattering when the electrons are described by a degenerate

distribution. 1In such a distribution, the electrons are

A s DRI
» DR T
RO

- at a low enough temperature and/or at a sufficiently high g
iz density so that the number of final energy states available E?
E to the scattered electrons is limited. There are a number 5
g of physical systems where the degeneracy effect is impor-
tant. Electron gases present in laser fusion reactors, ;
e fusion weapons, and white dwarf stars are degenerate éi
- ‘?! (4:225). The development of Compton cross sections, which :
EE could be computed quickly, for such systems would be of %i

great use. Radiation transport computer codes that use
l@ either the Pn or Sn method require knowledge of angle -
averaged Compton cross sections.

Present methods of determining Compton cross sec-

i
.
ot

tions involve interpolation from data tables acquired
through numerical computations or from methods such as the fﬂ

Fokker-Planck approximation (5:1). The drawback to the

.- Fokker-Planck method is that it breaks down in the rela- %
~" -
O RS
o tivistic regime. Although recent work indicates that an .§
~
& extension to relativistic distributions may be possible (8). ;q
- =
-~ IR
o o
3 1 o
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N Current research by Dr. George Nickel of Los Alamos

National Laboratory has yielded an analytic formalism for

et)
0

the Compton scattering kernel which describes the scattered

photon distribution. The intent of this research is to

extend Dr. Nickel's work to Compton scattering in degener-
ate electron gases, and to compute differential Compton

cross sections.

Goals and Discussion

The goal of this project was to develop an ana-
- lytical form of the chemical potential, incorporate it into
an electron vacancy factor, anq finally develop a computer
. code that would compute the cumulative scattering proba-
bility for degenerate gases. Time permitted the goal to be

extended to the computation of angle averaged Compton cross

2
1]
s,

sections. The main thrust of this research is aimed at

o 88
Ll
LN e

developing accurate Compton cross sections which could be
computed quickly. Therefore, it was necessary to develop
as many approximations and analytic solutions as possible.
- These analytic expressions will eliminate lengthy numerical
computations. This will hopefully decrease run times in

.. computer codes where the Compton cross sections are used.

In addition, variable transformations were used throughout

the development to simplify integration. These transforma-

o
..n
o
%
-~
b
S
-.:1
.

tions greatly simplified the surface of integration. The

R

N validation of this work is essential. Presently, no work
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in the area of angle averaged Compton cross sections for
degenerate systems exists and the results listed in this
paper stand alone. To ensure that the computer code which
generated the results was working correctly, the electron
gas was treated as nondegenerate and the results compared
to existing data (5:12-13). The presence of this develop-
ment should be a 'tool' of considerable value to the radia-
tion transport community. The computer code "CSP" could

easily be adapted into existing codes.

Scope

This analysis is concerned with developing angle
averaged Compton cross sections for degenerate electron
gases and validation of the code. A particular area of
application was never specifically addressed, rather it

was intended that the development be generalized and its

usage left to others.
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II. The Electron Distribution

Fermi Distributions

=" l..A. l_un_' ._" ‘.._h

The understanding and subsequent development of
various parameters associated with a Fermi gas was critical
in this research. The Fermi gas is described through the
use of statistical mechanics. A Fermi gas receives its
name because the gas consists of fermions. Fermions are a
class of particles which have half integer spin and include
such particles as neutrons, protons, and electrons. 1In
this study only the electrons are examined. An area of par-
ticular interest is the distribution of fermions in the gas.

Fermions are treated as being identical and indis-
tinguishable particles. Because of this, any fermion has
an equal probability of being in any energy state. Also,
fermions obey the Pauli exclusion principle which states
there can only be zero or one fermion in any single par-
ticle state given by a set of quantum numbers. An equation
which addresses the probability of a state being occupied
can be derived by using the partition function for a grand
canonical distribution, applying the above constraint, and
summing over the energy states (3:197-199). The distribu-

tion function for single particle energy states is given by,

¥ A
A
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where
€ = kinetic energy of the Fermion
k = Boltzmann's constant
= equilibrium temperature of the Fermi gas

M = chemical potential

The chemical potential is also referred to as the Fermi
energy, &g, in the limit as T+0. The chemical potential can
be thought of as a mass transfer parameter and will be dis-
cussed in more detail later in this paper. At absolute

“ zero if e>u n(€) goes to zero while if €<y the term in the
exponential goes to zero and n(€)+1l. When most of the
energy levels €< have an occupation of 1 and most of the
energy levels é>u are unoccupied, the Fermi gas is said to
be degenerate. Figure 1 shows n(€) versus energy when the

temperature is equal to zero.

A
1.0
n(&) oSt
; + —
o t.o - E/A .0

Fig. 1. Occupation of States at T=0

el e e
'.- -..-.' - A ¥ 3 a5 lL&




3 e
PLE L AL

1
P

T
TR R RVay |

If ™0 then the number of energy states available spreads

out over a wider range and maximizes the total energy con-
tent of the system. Figure 2 shows n(€) versus energy at

temperatures much greater than zero.

A

o - —- —

|
nle) |

0.5 | I

\l
2 1 s s

o] 10 % 20

Fig. 2. Occupation of States at T>>0

Figure 3 shows the occupation of energy states as a func-
tion of temperature and speed. As will be shown later in
this paper, the chemical potential is also a function of
electron number density and temperature and takes on large
negative values as the temperature is increased. Therefore,
the exponential term in n(€) goes to infinity and n(e€) goes
to zero in the high temperature regime. Equipped with the
knowledge of the occupation of energy states, the next step
is to determine the Fermi distribution function.

In order to obtain the distribution of fermions in
a gas, the number of available states in the system is
multiplied by the probability of the energy state being

occupied. The number of energy states available in a

Fermi gas can be described by the quantum mechanical
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results for a particle in a box. The number of states

available D(p) is,

D)= 4MraVps
() ?‘3 [ (2)
where

the spin degeneracy g=2s+l1 (s=1/2 for Fermions)

Planck's constant

momentum

p

The distribution of Fermions is now

flp)= AT g 3)
h 45994*\45r4,3_

In order to understand the Fermi distribution, the behavior
in the degenerate and nondegenerate limit is studied.

First, the effects of the variation of the chemical
potential on the electron distribution are examined. 1In
the case when the chemical potential is negative (non-
degenerate limit), f(p) reverts back to a Maxwellian dis-
tribution. In the other limit, when the chemical potential
is positive and greater than most of the kinetic energies,
the gas becomes degenerate. 1In a degenerate gas, the acces-
sibility to higher energy states is extremely limited.
This behavior is examined in a Fermi gas as it is brought

to low temperatures (T+0) or to high particle densities.
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A parameter that arises from the derivation of the average
energy of a Fermi gas (1:439) and is helpful in determining

degeneracy is the ratio

__ N®
3. V(e moKT %2 (L“

where ﬁ is the thermal DeBroglie wavelength and
(%gysis the atomic separation distance. If the wavelength
is greater than the separation distance of the particles,
the wave nature is expected to be apparent. Therefore,
when& is greater than or equal to one, the electron gas is
degenerate.

Since, the treatment of a relativistic distribution

arises in this study a relativistic form of £ (p) in terms

of velocity was derived (Appendix E).

_ ar\¢m X5
= W LAy plfer, 4 (s)

Figures 4 and 5 show plots of this distribution F(v/vo)
versus v/vo where vo is the most probable velocity associ-
ated with the distribution. A number density of 1025
electrons per cubic centimeter was chosen for all cases.
It can be seen that the electron distribution shifts as
the temperature decreases and finally exhibits the behavior

of a step function characteristic of a degenerate fermi

gas. When the degeneracy is nonexistent equation 5 reverts
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to the relativistic Maxwellian. As a comparison, the
plots for relativistic Maxwellians were placed adjacent
to the plots of the fermi distributions. The fermi dis-
tribution was in close agreement with the relativistic
Maxwellian in the nondegenerate limit. The relativistic

Maxwellian distribution is given by

-l
m°X5 e.

f= rarw neC

(e)

where

2
Kz_("—’l's ): second order Bessel function of the
Vﬂ- second kind

and can be found in reference (9) . Next, an analytical

form of the chemical potential is derived.

Chemical Potential

As has been sho&n, the chemical potential is a
parameter that largely influences the behavior of the
electron gas. The ability to easily compute the chemical
potential presents a problem. The chemical potential can

be found numerically by solving the equation,

QQ
= s z_}
N[O e @

which states that the total number of particles is equal

to the distribution of fermions integrated over all e

12
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> R momentum. This is both tedious and impractical for usage

in computer codes where quick computations are a necessity.
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Instead, the limits in which g4 is positive and negative

LA A A R

have been examined and an analytical representation devel-

L".'..f R

oped for each regime. When the gas is degenerative (u>0),

)i

the chemical potential (Appendix B) is given by

2 4 “
ees|1- (T JL(J;) &
m=esli- TS+ (% () ‘

r.or.o.
1 L N .
PPN ST SN RITar Vy

where € is the Fermi energy and is the value of the chemi-

cal potential at T=0. Also, the Fermi temperature is

WA .

defined by the equation

(o Ex= kg ()

c ORI
. gl

In the other limit the chemical potential is -
NS

Vs % =

/A=—kT |0¢3 A [ mMT )@ (1e) ~1

N 2T &* ]

Development of equations 8 and 10 is contained in Appen- 53
dix C. In order to determine the accuracy of equations 8 7
and 10, numerical solutions were computed using equation 7. ]
Accurate values of the numerically computed 4 were obtained ?3
by doing a variable transformation and selecting a variable :;
3

grid spacing for integration. Table 1 shows numerical and -
analytical results are in close agreement as the temperature ;;
)
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. - is varied. Table 2 shows the same comparison yet with
various number densities and temperature extremes. In
table 2, the high temperature regults do not agree as
closely as do the low temperature results. At high tempera-
tures the distribution becomes relativistic and equation 10
breaks down. Any discrepancies that do arise lead to only
minute effects on the distribution. Also, as the chemical
potential approaches zero the analytical results start to
diverge away from the numerical results. This appears to
be an additional area in which the analytical representa-
tion breaks down. The parameter space of interest that this
report addresses leads to values for the chemical potential
which do not lie in this region.

e A plot of H/g; versus T/r; is presented in figure 6
showing, as had been earlier stated, that as the temperature
gets large relative to the Fermi témperature the chemical
potential goes negative. The break in the curve at u# equal
zero arises because of assumptions made in the development
of the chemical potential. To further grasp the behavior
of the chemical potential, a three-dimensional plot has
been constructed. Figure 7 presents the sensitivity of

the chemical potential to increases in temperature and

number density. As temperature is increased and the number b
TN

density held constant, the chemical potential goes toc larger }ﬂ
|

o

and larger negative values. But when the temperature is {q
o
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III. Scattering Kernel

The Compton cross section can be decomposed into

three parts.

O = Na/Aa Kloaw') (1)
where
h43=vthe number of scattering centers per unit volume
Ms = collision cross section per unit scatter

K(\)-)\)')= the scattering kernel

The kernel is the portion of the cross section which
describes the probability a photon of energy hv will
scatter to some final energy hWy'. It is the dominate term
in the cross section. The scattering kernel integrated
over all possible scattered photon energies and angles is
equal one. Therefore, a cumulative distribution function
was chosen to represent tﬁe kernel.

The methodology used to develop the Compton scatter-
ing kernel for a degenerate electron gas parallels Nickel's
recent work (5), but changes have been incorporated which
eliminate some previous difficulties. Compton scattering
is defined in terms of an incident photon scattering from

an electron at rest (see figure 8).
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SCATTERED
ELEcCTRON

Fig. 8. Compton Scattering Geometry
in the Electron Rest Frame

The Compton scattering formula,

i hv (12)
hw i + (~cos® \h“'/m,c"'

exhibits the characteristic that photons cannot gain energy
upon scattering. But if scattering occurs between a photon
and moving electron, the electron can impart some or all of
its energy to the photon and increase the photon's energy.
This is defined as inverse Compton scattering. The scatter-
ing kernel developed is for the case of photon scattering
from a degenerate gas of free electrons.

This development begins in the laboratory frame
where, the incident photon makes an angle‘? with the inci-
dent electron (see figure 9). A transformation is made to
the electron rest frame and Compton scattering is applied.
The angles # and T represent a polar and azimuthal change

4

of the scattered photon. The quantities a’ and a” are the

21
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Fig. 9. 1Initial Scattering Geometry
in the Laboratory Frame
incident and scattered photon energies in the rest frame

in units of electron rest mass energy (see figure 10).

Fig. 10. Scattering Geometry in
the Electron Rest Frame

Next, by transforming back to the lab frame one has,

¥ ‘C(\ Em‘?)«»b'&m&(coo?-p\+Fxs\nas\n'\'s|n‘9 (13)

a 1+ Y\ -@eos @Y \-cosO)
=

where ag is now the scattered photon energy in the lab N
=

frame. The development of equation 13 is contained in =
]

22 ]
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Appendix D. Equation 13 represents a surface in ‘(’,T,a
i v' space and is used to determine the limits of the cumulative
N distribution function. The cumulative distribution function
is defined as the product of the three angular distribution

“~
. functions.

: F (oo ) f;mn f&(e)ae fw\aw (1)

F(d,as‘,B) is the probability a photon of energy a will
. scatter to a4 by interacting with an electron of speed 8.

Introducing the variables 3,%‘0.. where

3= el 1] )

9= y& -B - (e)

(1)

further simplifies equation 13, resulting in:

-3 (- cos@Ni-a Yol + (1-cas@ )8 4 -‘-fsinﬁsiw" smd  (18)

Note, that this transformation further reduces the number
of independent variables from seven to five. The angular

distribution functions over @O were selected to be




kA LN

{
™M= 7% -wevEr (1)

F@) 4 2 2(bo)i-gos0)t (1-22ar)1-cosOW & o' (1-c03OY (20

(V> al(1-ces0))3
o29<1TY

Fe)= L sm®@ o=qQ=eTr (=)

Equation 19 assumes the polarization of the photon is
unimportant. Equation 20 is the Klein-Nishina formula in
the electron rest frame. A %’dependence arises in the
normalization factor 'A' because of the a’ term. The inci-
dent photon energy in the rest frame, a’/, can be defined in
terms of the incident photon o in the lab frame by the

equation
(22)

«'= «Y(1- Beos? )

Thus, the‘? dependence is seen. Lastly, equation 21 implies
that the angle between the incident photon and electron is

distributed isotropically. Next, let

r=(1-cos® ) (23)

and 'A' can be easily computed.

A= drf d(ces®) 2-20-aNra(1-2a aett )02 & oi'ed (24)
S [ e ]?




The integrals over ¥, T,v are weighted by the respective
probabilities and can be regarded as the integral over a
sphere of radius 'r', polar angle "f', and azimuthal angle

'r' (see figure 11).

ERAPLICATED
SoRFACE oF
ComaTAnY YN

N3

Fig. 11. sScattering Sphere over @,T ,C Space

The integration is still difficult. Although the distribu-
tion function is now independent of T, the boundary surface
is not. A variable transform to angles ‘{" and T' is made
and the coordinate system is rotated by angle § about the

axis ‘e'--“'/z_ and “P= 0 (see figures 12 and 13).

2

>

LAB FramME
Tsgf ax1s

A‘ "\\\
] \\\
- {
.:, | — - %/ | Y
x‘ T - Y

Y REST FRAME

e v e
’I'--d a *

Fig. 12. Geometiry Prior to Rotation
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Fig. 13. Geometry After Rotation

The terms for cos Y and sin P sin r are substituted by

making use of the identity (5:6)
! ‘ ‘end (z5)
cos‘e: co:“? cosé' sin@ ST ‘sin
. (- [;
S ‘Qs\nh" =cos ‘Q‘am& 4+ snQ sin Teosd (26)

where sin § and cos § are chosen as

nd = _ver-r?
S X\/zcu-?z).“.z(az_d.)\ (2.‘7)

cosd = r(1-0)

£ Ver(1-#) s (et

(ze)

Equation 18 reduces to

- -3 = V2r (e e (B-at) Teastt’ wr 4 (29)

e . PP
PV YT D W AT N )

‘a

The surface is simplified but the distribution function .

F(u,uf‘p) is complicated. Fortunately, some of the )

e ad
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& e integrals contai- odd functions integrated over even inter-
vals and are eliminated. The transformations known as
'shearing transformations' used to obtain equation 29 greatly
. simplify integration. Figure 14 shows the surface in
' space prior to and after the shearing transformation. Next,
’ ' the value of 'r' at the intersection of the surface at = 0

or 7 is defined as 'rmin'. Rmin is found by solving equa-

tion 13 for its minimum value.

e84yl - ViFRY - RedE) [@vd 78] (o)

Vrnin oZ 4 qz; §z

T = Z(&Z‘)‘\'é’t—ﬁq [ c.I:"‘l' é\‘:" Pt ] : (3‘)

In addition, the photons can scatter over the range speci-

fied by solving the quadratic in equation 13 for ag.

O and o, ., are given by .
1 z

Xs win = x\-w*zzu z 1% L £ (g+za) -l 32) .
e (gezafipes [1+48* +2 %" -

o

-3

-]

The limits on cos ((’\‘ and cos L(J,i when z<0 are i
=.'..1

cos ((2'= -1 (339 -
cos ‘-Q,' = (3+ré\\/V2r (\" &‘\) +r? (@z—a") (3u) i
~—

N
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Fig. 14. 1Integration Geometry Prior To and After the

Shearing Transformation (reprinted with per- 8
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. .when z>0
cos ¢,/ = 1 . (35)
cos ' = ‘(3-&"?\\ /‘[a"' (1-8*) + 72(p*-a?) (36)

The final form of the cumulative distribution function can
now be written. When z<0 the cumulative distribution

function is,

[
F(34 )= f “"[a&,m [2- 20- 20 + (1-2ave )

I’M q‘l

§ wr3]/(rae (37)

and for z>0

2 Q’_'
F(3-é\|‘*}-‘- 1 - f—z%ijifv'd(»s‘(\ [Z.—Z(\-q‘\)r A

3 2

(1-2.«’+u’ a o&r"]/(l*o\ r) (ze) o

D

S

R

NS

v

An approximation can be made to further simplify the 1

integral. For electrons and photons with kilovolt energies,
o%10~2 making B8#10”! and 'a' on the order of 10"%. Thus

an 'a' can be ignored as a lowest order approximation to



equations 37 and 38. Since the a’ term arises only in the

Klein-Nishina formula, a numerical integration was done to

determine the normalizatiom constant when a’ was small.
The results were compared to analytical results obtained
by ignoring @/, and were in close agreement. Thus, this
approximation to the scattering kernel is fairly good.

The cumulative scattering probability becomes

T‘;‘Y * dr “
\d Lé\ﬁ\"‘f P ‘;\'f dlcos}(2-2rrr?) (34)
- Fmin ‘e.' '

Further approximations yield

F 437 $Ene 13qe+8q, {3 | (o)

f32c:
where
- _:5.._ 2 n-'/z
%n- \szf(a— Zract) vV 2 dyr H1)
Crnvn
and
3
Ne= & Tmin - —3‘-; r,:;,_. x -‘lér,,,-m3 w=z)

The cumulative scattering probability is multiplied by an

electron vacancy factor 1-w(€; ... ) and, where €, is the

final electron energy associated with a scattering event.
This diminishes the probability of a scattering event

occurring if the final electron state is occupied.
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The cumulative scattering probability can be com-

puted through the use of equations 37 and 38. A computer

2y

-
.
LIRS,

] T

code was written to run on the CDC Cyber which would com-

2

- pute the cumulative scattering probability averaged over

R

.-
.
30 R

the velocities of an electron distribution. In addition,

an electron vacancy factor was included to account for final
electron energy state occqpation when the gas is degenerate.
The results for the cumulative scattering probability were

then used to find the differential Compton cross section.

f ‘3! Methodology

In order to compute the cumulative scattering proba-

bility, a computer code, 'EDIST', was used to compute the

-1

e
by

one hundred equally probable velocities for an electron
distribution. An incident photon energy was chosen and
; another program °'CSP' used the energy data from 'EDIST' to
find the average cumulative scattering probability. 1In
'CSP', the scattered photon energy bins were first initial-
; ized. Then for each electron velocity, the probability of
scattering into each energy bin was computed. The proba-
N bility of scattering into a certain energy bin was multi-

plied by the electron vacancy factor l-n(e¢). Just prior to

computing the cumulative scattering probability, the final
- - “:

31
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L S electron energy necessary for a photon to scatter into a
| particular bin was calculated. This energy of the electron
N was used to compute n(€). -The two programs were run for
cases of varying number densities, incident photon energies,

and electron temperatures,

Discussion of Results

Figures 15 and 16 show the behavior of the cumula-
tive scattering probability (equations 37 and 38) for the

nondegenerate and degenerate cases. The scattered photon

energy versus the probability of scattering into that

- energy bin is plotted for incident photon energies of 2 and
20 KeV. It can be seen that for a particular incident
photon energy, the cumulative scattering probability curves
shift toward higher scattered photon energies as the elec-
tron temperature is raised. This is due mainly to Doppler

shifting between the electron rest frame and the lab frame.

v The scattered energy states accessible to the incident ??
% photon are contained in the region of the cumulative scatter- :3
X ing probability curves where the slope is varying. 1In the ;1

degenerate limit, the cumulative scattering probability ;;
. L

curves are influenced by the final energy state occupation

of the electron. The curves show a decrease in the scatter-

ing probability at the higher scattered photon energies.

RN § EXXRA

e ) ¢ - ; '.-A_'.&A

The magnitude of this shift is a function of the electron

X TR

i temperature. At the higher temperatures, the degeneracy
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is not as pronounced as at the low temperatures. The
Compton scattering kernel can now be used to calculate

Compton cross sections. .

'- ..v '. ‘l .-. (l s
a

The differential Compton cross section d(o.) is o

computed by evaluating
: dio) = o 2E dug (43)
- 3

where oy,,. is the Klein-Nishina cross section for small g,

- 80 2 e 2 =
Okn. = = % (‘L- Zu’-rz-g'ol' ... \ (HH\ C
% and gg is the cumulative scattering probability dif-
3
2 e ferentiated with respect to the scattered photon energy.

- Since 'F' is a function of 'rmin' and ‘rmin' in turn a -3
function of ag, explicit representation of the differentia-
tion was tedious but not impossible. Computer runs using

: an averaging approach similar to that used in 'CSP' were

: used to compute oF

0 ag

be inconclusive since they showed that downscatter was

. Initial results obtained proved to

dominant in the Compton cross section profiles even at low
incident photon energies. At low incident photon energies,
the electron can be treated as being infinitely massive and
.C,;. the scattered photon energy is slightly shifted to lower and
v higher energies. This can easily be shown by evaluating the f:::

normal electron rest frame formula for Compton scattering.
35 ::.:
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Another approach was taken to compute the differential
Compton cross section.

Since curves of the cumulative scattering proba-
bility versus scattered photon énergy can be computed,
-%{;- can be evaluated by finding the slope at various
poin:s on the cumulative scattering probability curves.
Differential Compton cross sections were computed for
electron temperatures of 1 KeV and 20 KeV, number of densi-

ties of 1027, 1031, 1033

, and 1035 electrons per cubic meter.
Also, incident photon energies of 5, 10, 20, 40, and 60
KeV were chosen. Figures 17 and 18 show the differential
cross section in millibarns per KeV versus the final
scattered photon energy. The solid lines are the cross
sections in the nondegenerate limit. These 'tents' show
the same general behavior as results found in references
(6:188) and (9:16-18).

The cross sections exhibit three distinct charac-
teristics: Compton shift, Doppler shift, and upscatter of
the photon in the lab frame. A photon will, upon scatter-
ing, have its frequency decreased due to the usual Compton

shift associated with scattering of electrons at rest.

This effect on the cross sections is more noticeable when

DNOSLRA

the incident photon energy becomes a significant fraction

>

RN R A

of the electron rest energy. Secondly, there is broadening

¢

of the cross sections due to the Doppler effect of scatter-

ing from a distribution of moving electrons. Finally, the

0
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energy of the scattered photon will increase due to the
relativistic effect that the photon will appear more intense
to an electron moving toward it than away from it. This is
the reason that upscatter component of the Compton cross
section is seen in the lab frame even though no upscatter
occurs in the rest -frame. As Pomraning (9:184) points out,
this blue shift is needed to balance the Compton red shift.

If a radiation field at a certain temperature

scatters from an electron gas at the same temperature,
the scattered photons should have the same distribution
as the incident photons [9:184].

The Compton cross sections decrease with increasing
photon energy because the units are in millibarns per KeV.
Thus, the cross sections fall off as one over the energy of
the scattered photon. At low incident photon energies, the
profile of the Compton cross sections have some character-
istic width controlled by Doppler broadening. When the
energy of the photon is increased, the profile of the
Compton cross sections is driven by the Compton scattering
formula which represents a square step function in the
electron rest frame. This square step function is broad-
ened at the higher incident photon energies and competes
with and begins to dominate the Doppler effect in influ-
encing the shape of the cross sections. Also, figure 18
shows that Doppler broadening of the Compton cross sections

becomes more significant as the electron temperature is

OF -

aas

increased. The expression for goes approximately
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as 1/8, so the Compton cross section for a particular inci-
dent photon energy decreases as the electron temperature
is raised.

The dashed lines show the differential cross sec-
tions when the photons interact with a degenerate electron
gas. The behavior is consistent with theory. The number
of final energy states is limited as the gas becomes
degenerate. The instances where the electron delivers most
or all of its energy are decreased since the lower final
energy states required for such an event are filled. 1If a
Compton scattering event does occur, the photon will most
likely downscatter to lower energies. Thus, a slight
shift to lower photon energies is seen in the ‘'tents’'.

This behavior is more noticeable at higher incident photon
c"-‘ energies. Also, the peaks of the 'tents' decrease because
the cumulative scattering probability decreases in a
degenerate electron gas. The general behavior of these
degenerate differential Compton cross sections coincides
with nondegenerate case outlined above.

A deeper appreciation of this development can be
given by noting the reduction of the computational time
required to evaluate the Compton cross sections. Dr. Nickel

numerically evaluated equations 37 and 38 with an electron

vacancy factor for the case in figure 17. His results,

while agreeing with those in figure 17, took approximately

o 0y
AP A
»_ 0 -

an hour of CRAY time to compute. The results obtained in Q%
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this report required only 2.65 cpu seconds on the CDC IH

Cyber. ;j

Higher incident photon energies were not examined =

because the approximation to the scattering kernel breaks .g

down as the photon energy approaches the electron rest E;
energy. Earlier work by Nickel (7) shows that as the ratio

-%— becomes large, the kernel becomes double valued. The ]

breakdown in the approximation of the kernel might be allevi- ii

ated by higher order approximations to equations 37 and 38. .J

Further research is needed.
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V. Recommendations

-

Several areas of this investigation were not fully
examined but deserve further analysis. A few topics of
continued research are listed below.

1. Scattering Kernel. Although the results
obtained in figures 15-18 lead to good results for the
Compton cross sections, it is necessary to compare these
analytical results to exact ones. Therefore, numerical
integration of equations 37 and 38 is needed as a yard-
stick to measure the accuracy of the analytical results.
Also, it would be interesting to determine if higher order
approximations to equations 37 and 38 lead to a better
correlation with the exact results.

2. Compton Cross Sections. As mentioned in the
results section, some difficulty was encountered in the
explicit evaluation of the differentiated scattering kernel.
It is hoped that continued work will present a clean solu-
tion to this problem.

3. Computer Implementation. An analysis should
be done to find if a marked difference exists between exist-

ing codes which use the lengthy methods of determining

cross sections and an updated code that used the modified
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- Nickel formalism. It is hoped that use of this development
for Compton cross sections will drastically reduce run

times and in turn save money.

£
'l'

fy

L
A rﬁlb

v
.
o

AL

- o
MRS

-
P
. ‘2 'y

43

..
'ﬁ‘vl

.“.. '_.' “.':- 1

s



'''''''

_______________________

VI. Conclusions

v

The answers obtained for Compton cross sections in

v . g
EIP AP R

the nondegenerate limit for electron and photon energies
in the kilovolt regime corresponded to cross sections that
exist in current literature. This showed that the computer
code was running correctly and that the lowest order approxi-
mation to the Compton scattering kernel was a good one.
The extension to the degenerate limit yielded Compton cross
sections that were lower in magnitude and shadowed by the
nondegenerate results. The degenerate results reflected
the fact that lower energy states of the electron distribu-
(3 tion were filled. Therefore, scattering to these final
% energy states was inhibited. The most outstanding fact of
- this development of angle-averaged Compton cross sections
is the small amount of computer time required to obtain

results. There was a decrease by three orders of magnitude

in run times by using an approximation to the kernel. If o
further investigations of this method can be extended to
- photon and electron temperatures in the hundreds of KeVs Dy

- and implemented into weapons or fusion computer codes, then .

a very significant impact on computer run times may be seen.
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A. 'CSP' Listing

The program 'CSP' is used to compute the cumulative
scattering probability given an initial photon energy and
velocities of an electron distribution. A listing of the

code and the variables is contained on the following pages.
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2 PROGRAM CSP

THIS PROGRAM COMPUTES SCATTERING PROB. WITH THE .
'NEW' RMIN FOR A DEGENERATE DISTRIBUTION -

* * ¥ *

INTEGER L,Q,NOD(350),TOTAL -
LOGICAL FLAG (350)

REAL AA,BB,CC,DD,EE,FF,GG,R,TOT(350,150)
REAL ALPHMI ,ALPHMA,VI(300),NE

REAL M,C,K,H,VOL,PI,AL(350),T,N

REAL ALPHI,F,ALPHS,BETA,Bl,LA,PROB(350)
REAL VMAX,VMIN,DIFFER,LAPR -
o PARAMETER (M=9.1E-31,C=3E8,K=1.38E-23) L
PARAMETER (H=6 . 63E-34,VOL=1. ,PI=3.14159) -

v
%*

THE INCIDENT PHOTON ENERGY IS ENTERED

N PRINT*, 'ENTER THE INCIDENT PHOTON ENERGY' ]
= READ* , ALPHI \
- ALPHI=ALPHI/511.

THE GRID OF SCATTERED ENERGY, ALONG WITH A FLAG
AND COUNTER ARE INITIALIZED

* % % *

I=1
DO 11 R=1,6,.0195 -
AL (I) =REAL (R) /511.
- NOD (I) =1 %
FLAG(I)=.TRUE. o
TOT (I,1) =0

I=I+1 o
Y 11 CONTINUE -

»*

ENTER THE VELOCITY DATA POINTS

PRINT*, 'ENTER THE TOTAL # OF VELOCITY DATA POINTS' r
READ*, TOTAL

; * READ THE FILE "VEL" CONTAINING THE VELOCITY DATA N

46
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* * % ¥ *

»

OPEN(3,FILE='VEL"')

REWIND 3

DO 88 I=2,TOTAL+1
READ (3,FMT=89) VI (I)
CONTINUE

FORMAT (E11. 3)

CLOSE (3)

ENTER THE NUMBER DENSITY OF THE SYSTEM

PRINT*, 'ENTER THE NUMBER DENSITY OF THE SYSTEM'
READ*,N

ENTER THE TEMPERATURE OF THE ELECTRONS

PRINT*, 'ENTER THE TEMPERATURE OF THE SYSTEM'
READ*,T
T=T/8.61E-8

COMPUTE CUMULATIVE SCATTERING PROBABILITY
CURVES FOR EACH ELECTRON VELOCITY

DO 5 Q=2,TOTAL+1
V=VI (Q)

COMPUTE ALPHA AND BETA

LA=1/SQRT (1~ ((V/C) **2,))
Bl=1-(1/(LA**2,))
BETA=SQRT (Bl)

DETERMINE THE LIMITS OF THE SCATTERED ENERGY

BB=((1/LA)+(2.*ALPHI) ) **2,
AA=1+ (BETA*BETA) + (2. *LA*ALPHI)
CC=BB~- ( (BETA*ALPHI) **2.)
DD=CC/ (LA*LA)

EE=AA**2,

FF=DD/EE

GG=SQRT (1-FF)
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ALPHMA=ALPHI* (AA/CC) * (1+GG)
ALPHMI=ALPHI* (AA/CC) * (1-GG)

* COMPUTE THE PROBABILITY FOR EACH SCATTERING BIN

DO 1 L=1,257

IF (AL(L).LT.ALPHMI.OR.AL(L).GT.ALPHMA) THEN
TOT(L,Q) =0

ELSE

ALPHS=AL (L)

LAPR=ALPHI~AL (L) +LA

CALL CHEMPO (NE,PI,VOL,M,H,K,C,LAPR,N,T)

CALL PHOTDI (F,BETA,K,T,M,C,H,ALPHI,ALPHS,NE)
TOT (L,Q) =F

TOT (L,Q) =TOT (L,Q) +TOT(L,Q-1)

IF(FLAG(L)) THEN
NOD (L) =NOD (L)
FLAG (L) =.FALSE.

ELSE
NOD (L) =NOD (L) +1
ENDIF

ENDIF

PROB (L) =TOT (L, Q) /NOD (L)
1 CONTINUE
5 CONTINUE

*»

WRITE OUTPUT TO THE FILE "OP"

L=L-1
OPEN(3,FILE='0P"')
REWIND 3

WRITE (3,FMT=101)
bo 10 I=1,L

IF (I.NE.l) THEN

IF (PROB(I).LT.PROB(I-1)) THEN
PROB (I)=PROB(I-1)

ENDIF

ENDIF

WRITE (3,FMT=100) AL (I) *511. ,PROB(I)
10 CONTINUE ' .
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n:':-; 100 FOR.MAT (F7 . 4 ' Sx r F? . 4)
N 101 FORMAT (50X)
CLOSE (3)

;-

A END

‘e

L XX E X222 RS2 RS2SR 2222222222 RREEE 2]

SUBROUTINE PHOTDI (F,BETA,K,T,M,C,H,ALPHI ,ALPHS,NE)
REAL BETA,LAM,M,C,KT,ASQR,BESQR,ZSQR

REAL ALPHI,ALPHS,NE

REAL HO1,H02,H03,G01,G02,G03,G04,G05,G06

REAL G11,G12,G13,G14,G15,Gl16,RMIN2,RMIN3

REAL ZESQR,A,Z,ZETA,RMIN1,RMIN,H0GO,Gl,F,SRT
LAM=1/SQRT (1- (BETA**2,))

SRT=2,** .5

*

COMPUTE Z,ZETA,A

Z2=(1/ (LAM*LAM*BETA) )* ((ALPHS /ALPHI) -1)
ZETA=( (ALPHS/ (LAM*BETA) ) -BETA)
A =ALPHS/LAM

d *
n * COMPUTE RMIN

b
*

v
» s

ASQR=A**2

BESQR=BETA**2.

ZSQR=Z**2,

ZESQR=ZETA**2,

IF (ASQR+ZESQR.EQ.BESQR) THEN
RMIN=ZSQR/ (2.* (1-BESQR~- (ZETA*2)))
ELSE

RMIN1=1-BESQR~ (ZETA*Z)
RMIN2=-BESQR+AZQR+ZESQR
RMIN3=BESQR-1+(2*ZETA)
RMIN=(RMIN1-SQRT ( ( (RMIN3) **2,) - (ZSQR*RMIN2) ) ) /RMIN2
ENDIF

N

4 LR A

* COMPUTE GO,G1,HO

HO1=(3.*RMIN) /8.
HO2=(3.*RMIN*RMIN) /16.
HO3=(RMIN**3.)/16.

HO = HO1-HO02+HO3

it AR &t

G01=(11./20.)
G02=SQRT (RMIN)

SONNNOYS v by
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G03=3./(4.*SRT)
G04=RMIN/ (4. *SRT)
GO5=(3.*RMIN*RMIN) / (40.*SRT)
G06=G02* (G03-G04+G05)
G0=G01-G06

Gl1l1=(23./70.)

G12=RMIN**] .5
G13=1/ (4. *SRT)
G14=(3.*RMIN) / (20.*SRT)
G15=(3.*RMIN*RMIN) / (56.*SRT)
G16=G12* (G13~G14+G15)
G1l=Gl1-Glé6

* COMPUTE F (ALPHA, ALPHAS,BETA)

IF (2.LT.0) THEN
F=(.5-HO0+(2*GO)+(ZETA*G1l) ) * (1. -NE)
ELSE
F=(.5+H0+(Z*G0) + (ZETA*G1) ) * (1-NE)
ENDIF

END

IZE S22 RS R RS RS2 2222222222222 222222222 2]

SUBROUTINE CHEMPO (NE,PI,VOL,M,H,K,C,LAPR,N,T)
REAL T,M,H,N,C,VOL,MU,EF,PI, KT
REAL VOLS,NE,K,LAPR

*

COMPUTE FERMI ENERGY

KT=K*T '
EF=(H/ (M*LAPR) ) *(H/8.) * (((3.*N) /(PI*VOL) ) **(2./3.))

»

DETERMINE THE CHEMICAL POTENTIAL

IF {((T/(EF/K))**2).GT.(12/(PI**2.))) THEN
MU=-KT*LOG ({2.*VOL/N) * ( ( (2*PI*M*LAPR*T/H) * (K/H) ) **1.5))
ELSE
MU=EF* (1= (((KT/EF) **2 ) * ((PI**2.)/12.)))
ENDIF

COMPUTE THE PROBABILITY OF THE FINAL ENERGY STATE
BEING OCCUPIED

* * % »

-




~
e
5
)
E-
‘\
.

VOLS=( (M*C*C* (LAPR-1) ) -MU) /KT
IF (VOLS.GT.87) THEN
NE=0
ELSE
NE=1/ (EXP (VOLS) +1.)
ENDIF

END
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ALPHI

ALPHMA

ALPHMI

ALPHS
ASQR

BB

BESQR

BETA

cC

DD

EE

EF

FF

L]

variable Listing

An independent variable

A parameter used to compute the minimum and maxi-

mum scattered energy

An array identifying the scattered energy bins

The incident photon energy

The maximum energy a photon can scatter

to when

interacting with an electron of a particular speed

The minimum energy a photon can scatter to when
interacting with an electron of a particular speed

The scattered photon energy
The variable 'A' squared

A parameter used to compute the minimum
mum scattered energy

The variable 'BETA' squared

The speed of an electron divided by the
light

The speed of light

A parameter used to compute the minimum
maximum scattered energy

A parameter used to compute the minimum
maximum scattered energy

A parameter used to compute the minimum
maximum scattered energy

The fermi energy

and maxi-

speed of

and

and

and

The cumulative scattering probability equation

A parameter used to compute the minimum
maximum scattered energy
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FLAG

G0l1-Glé

GG

HO1-HO3

KT

LA

LAM

LAPR

MU

NE

NOD

PI

PROB

RMIN

A logical flag that determines whether the
scattered energy of the photon lies within the
actual range of possible scattering energies

Terms in the cumulative scattering probability
equation

A parameter used to compute the minimum and
maximum scattered energy

Terms in the cumulative scattering probability
equation

Planck's constant
Boltzmann's constant
The thermal energy of the electrons

A counter used to initialize the scattered energy
bins

One over the square root one minus beta squared
The same as variable 'LA'

The same as 'LA' except that the electron speed
in beta is that associated with the final energy
of the scattered electron

The mass of an electron

The chemical potential

The number of density of the electrons

The probability of occupation of an electron
state

An array used to identify the number of times the
scattering probability was computed for each
scattering bin

The constant 'pi'

An array that divides 'TOT' by 'NOD'

A counter variable

A counter variable

The variable 'Rmin'
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YT

RMIN1 = A parameter used to compute °‘RMIN'
RMIN2 = A parameter used to compute 'RMIN'

RMIN3 A parameter used to compute 'RMIN'

T = The equilibrium temperature of the electrons
TOTAL = The total number of velocity data points

TOT = An array that contains the scattering probability
at different scattered energy bins

VI = An array containing the velocities associated
with the electron distribution

VOL

]

The volume of the system of electrons and photons

VOLS

A parameter used to determine if the exponential
term in the occupation equation is too large and
prevents overflow errors.

2 = An independent variable

ZETA = An independent variable

ZESQR

The variable 'ZETA' squared

ZSQR The variable 'Z' squared
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B. 'EDIST' Listing

The computer code 'EDIST' computes the velocity
distribution.data needed in the program 'CSP'. This data
is then used to find the cumulative scattering probability
averaged over these velocities. A code and variable list-

ing are contained in this appendix.
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PROGRAM EDIST

GIVEN # DENSITY AND TEMP, THIS PROGRAM DIVIDES THE DIST, Nt
INTO 100 EQUALLY PROBABLE SECTIONS. THE ENERGIES e
ASSOCIATED WITH THE EQUAL PROBABLE BLOCKS ARE USED TO .
COMPUTE THE SCATTERING PROBABILITY CURVES. F:

* % » 8 N %

REAL F(10000) ,EKT,E,DE,B,A,CONST,EN(200)
REAL VI (200) ,CSQR,NU,MU,W ¢
INTEGER N,L ”
CSQR=3EB8*3E8

PRINT*, 'ENTER THE TEMPERATURE OF THE ELECTRONS'

READ* , EKT -
PRINT*, 'ENTER THE NUMBER DENSITY OF THE SYSTEM' ' ;
READ* ,NU
DE=EKT/1000.
E=DE

CALL CHEMPO (MU,NU,EKT,E) ]
MU=MU/1.602E~16 %
W= (E~MU) /EKT $

- IF (W.GT.87) THEN "
o B=0 N
: ELSE o

B=SQRT (E* (E+1022.)) *(E*511.) * (1/(EXP (W) +1)) o
e ENDIF

F(l1)=.5*DE*B -
A=B 3
DO 1 N=2,10000 -
E=E+DE A
CALL CHEMPO (MU,NU, EKT,E)

MU=MU/1.602E~16 8
W= (E=-MU) /EKT =

IF (W.GT.87) THEN .
B=0 oo
ELSE

B=SQRT (E* (E+1022.)) * (E+511.) * (1/ (EXP (W) +1) )
ENDIF

F(N) =F(N-1) +.5*DE* (B+A)
A=B
1 CONTINUE
L CONST=F (10000) +B*EKT -
- PRINT* ,EKT, CONST -2

F(1)=F (1) /CONST
DO 5 N=2,10000

’ 'i -" V";-' ..'
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F (N)=F(N)/CONST
CONTINUE

WRITE THE EQUALLY PROBABLE VELOCITIES TO THE
FILE “VEL"

OPEN(3,FILE='VEL"')

REWIND 3

Do 20 I=1,L-1

VI (I)=SQRT(CSQR* (1-(1/(EN(I)/511.+1))**2.))
WRITE (3,FMT=100)VI(I)

CONTINUE

FORMAT (E11. 3)

CLOSE (3)

WRITE THE ELECTRON PROBABILITIES TO THE
FILE "MIKE"

OPEN(3,FILE="MIKE"')
REWIND 3

DO 55 I=1,L-1

WRITE (3,FMT=101)F (I)
CONTINUE

FORMAT (E11. 3)

WRITE (3,FMT=102)CONST
FORMAT (E13.4)

CLOSE (3)

END

LA 2SR 2SR R 2R 2 X 2 R X R R R RN PR R R R RS

SUBROUTINE CHEMPO (MU,NU,EKT,E)

REAL T,M,H,NU,C,VOL,MU,EF,PI, KT,LAM,K
PARAMETER (C=3.E8,M=9.1E-31,H=6.63E-34,VOL=1)
PARAMETER (K=1.38E~23,PI=3.14159)
T=EKT/8.61E-8

LAM=(E/511.)+1

COMPUTE FERMI ENERGY

KT=K*T
EF=(H/ (M*LAaM) ) * (H/8.) * (((3.*NU) / (PI*VOL) ) **(2./3.))




.............................

..................

DETERMINE THE CHEMICAL POTENTIAL

IF (((T/(EF/K))**2).GT.(12/(PI**2,))) THEN
MU=-KT*LOG ( (2. *VOL/NU) * ( ( (2*PI*M*LAM*T/H) * (K/H) ) **1.5))

ELSE
MU=EF* (1- ( ((KT/EF) **2.) * ((P1**2.) /12.)))

ENDIF

END




BETA

CONST
CSQR

DE

EF

EN

EKT

KT

LaM

MU

NE

B AP N - L A e LT e T T e T e ey

Variable Listing

The value of the-.-electron distribution at a par-
ticular energy, and used as the left boundary in
the trapezoidal integration

Same as 'A', but used as the right boundary in the
trapezoidal integration

The speed of an electron divided by the speed of
light

The speed of light
The numerically determined normalization constant
The variable 'C' squared

The enerqy increments used to integrate the
distribution

The energy of an electron in the distribution
The fermi energy

The array which contains the hundred equally
probable energies of the electron distribution

Same as 'KT', the thermal energy of the electrons

An array which contains the values of the electron
distribution at various energies

Planck's constant

Boltzmann's constant

The thermal energy of the electrons
The same as variable 'LA'

The mass of an electron

The chemical potential

The number density of the electrons

The probability of occupation of an electron state
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ﬂi ) PI = The constant 'pi' é
T = The equilibrium temperature of the electrons

: Vi = The array contairing the velocities associated
» with the electron distribution

VOL = The volume of the system of electrons and photons
w = A parameter used to determine if the exponential

- term in the occupation equation is too large and
" , prevents overflow errors
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C. Derivation of the Chemical Potential

o alelalals,

The chemical potential is derived for the cases

u

when WT is less and greater than zero.

The case where

T > @ is addressed first. The equation that defines
the chemical potential is the distribution of the electrons
integrated over all possible momentum. This is equal to
the number of electrons in the system.

oo

A’ 2
N= [ =L P d (c-1)
3 E(p)~ g
: J W LLE®I” VT x1
-~ n )
. : For ease of calculation, a variable change is made. Let
::: P= 2 (c-2)
K dp = ,__..'% -
g P ze <& (c-3)
the density is now,
eo
£ de
p= Qf —= = (c-1)
e(e—}-l)/k‘\’*.l
A °
§ where 'a' is equal to
< QAT (2m¥2 (c-s)
M S W
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Next define f(e) as

RS (c-&)

and using a hint from reference (2:36), the integral can

be rewritten.

A A
Terde f Yexe f Yewe + | FlEde (c-
p AT ) demAT, 1"'0 ¥ JCOAT, )

A variable change is made in the first integral. Letting

x=(§ije) and changing the limits the first integral becomes,

fw + (uaxKT) yrdx (c-8)

el
S
- L ~(e-22)
Similarly for the third integral let x= -—E?T and the

limits are changed such that the integral becomes,

Bp
Flu-xkT) KTdx (c-a)
e*+4

thus,

Ba M
b= f—F(m *KT) |\ Tdy ¥ (uexT) kTax + | ¥EWe (c-i10)
eX+ 4 e*~1
o [« ]

In the limit where '\},»T (Bu=zoo) so that integrals one

and three can be gathered under the same limits.




g A
p=f¥(u+x\=Tx\:§(}l-x\<T\ WTdx —\-[R&\d& (c-t1)
€

A Taylor series expansion is then performed about 4. The

density is now

360

A
prf-ka)ae + 1‘2“1’;'(“)" o T4 X ) « oT (C12)
After substituting

_F/(»):__ %»-‘/z. : (c-\3)

“:m(}‘q - o.% )‘\_S’/z‘ (e—1)

into equation C-12 and evaluating the remaining integral

the chemical potential is,
= L 1S S L A A -\5
#-G‘F[l \?—(») -\—"IZ.O( M)] (c’ \ )

where E_,; is the fermi energy and defined as

ey= W ( §_‘:‘.Y’3 B (STA

onp——
8wme
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Further approximations lead to

= 5#[1‘ TTFE(IﬁY + ';’Tz‘:(’%ﬂ (- )
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T £ = The Fermi temperature

Since the approximation made was for large -‘-?_‘—_- , equa-
tion (C-17) is valid until u is zero.
In the nondegenerate limit (#<0), the energy eigen-

values possible for single particle are,

g= W2W  (nZ+ng ang) (c -&)
2TV
and the partition function for a single particle in a

monatomic gas is

0 3o 230 W AR

1 sSTate S Ny "\3 “3

12
where Sg W ana Nyr Dy and n, can vary from 1 to o=

2% «© % % -
) M e DI
o \ Zn“i e .t (C-Zo\
2= EntyTa

The approximation that the number of energy states is a
continuum allows for the replacement of the summation
symbol by an integral so that
o
- AN
2= [ €5 Vane L(T
S

o

= (c-21)




...................

thus

| = KTmo -
Z4 3( — w)’\l (c-22)

where 'g' has been added to account for the spin degeneracy.
For a system of 'N' indistinguishable particles the par-

tition function (11:155) is,

N Y“okT 3np,
2= T op 2T 3“'\'“ ( 2MAE ) (c-23)
N. NY

Taking the natural logarithm of both sides yields

2. e
\ocji" N [\oa(ri\ﬂ + % \oj(\f\'\-\- z \ﬁ(“‘z“ ﬁ’-\}- \o3N \ (e-24)
using Stirling's theorem (10:611) which states

\eﬂ N = NioqN — N (C-25)

further simplifies equation (C-24) to

g2~ ['ﬁ(?,-lf) -3leqliw)+ %'w:s(%}?'za)] +1(c-z¢)

Now, by definition (10:323)

M= KT (b—\i:_%.) (C.—Z"l)
vT
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\ O so that the chemical potential in the nondegenerate “
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limit is, k
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D. Derivation of the Equation 13

Development of the Compton scattering formula with
an angular dependence in the laboratdry reference frame is
important for determining the limits for the scattered
photon distribution. The approach requires that transforma-
tions and rotations be made to simplify the final expression.

Starting in the lab frame, the velocity of the
electron is chosen to be in the direction of the z-axis and

- making an angle of‘? with the incident photon.

2

Y
= Prq}\-hv

X

- The photon 4 vector is,

o —

swmPcosX

- v wn
B=R| T (o-1)
1

[}

where X is an arbitrary angle chosen for convenience.

The electron 4 vector is

. 67
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Pe= | Vg1 (=2

| e X

Next, the symmetrized and normalized lorentz transformation

matrix
F1 o O O-
L= © 1L O O (>-2)
©o o ¥ -3
o o-%p ¥

is used to transform both electron and photon vectors to

(_. the electron rest frame. Under the transformation these

vectors become,

— -

: B i
7| , sSnPanX _ S
= L\é.\"' Bcos0- ¥R = q) Pe. MLl o ©-5)
i "X?)Cos%-\vx_ | 1

Next, the coordinate system is rotated to remove the 'x'
and 'y' components in the photon 4 vector. For ease of
computation, values of 1 and 0 were chosen for cos X and
sin X respectively. Thus,

sn? ]

3 ' v o -
- Po = 22 IX(cost- B) (2-e)
LZ‘(‘\.— Bccs‘Q\ |
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A rotation about the 'y' axis is done using the rotation

matrix
B : 7
coss o —'3\ncS <
o 1 o =
= D"P’\
R -Swmd L= coss < (
i [\ P < o
and the rotated photon 4 vector becomes
= -
snYWcosb - X(COS“e— @)SW\ S
o .
h o (b- =)
v :hn(PSnné;-+ X(FDSQL§;>“SSS
i ¥(- Beos®)
de The angle 4§ is picked so that the 'x' component is zero.

This requires that

Sin Q@ s = X(%s%-?) sind  (Dd-9)

and from this sin é and cos 8 are

~Sw\8m= S\h(Q (ID—\C>)

cosd = ¥(ceos ‘Q—?\ )
(1~ Beos?) (B-11)
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so the photon 4 vector is now,

r hv X(i..Bcos‘@3
| ¥(1- Peos e)

(D-12)

Using the above results, Compton scattering in the electron
rest frame becomes,
T} ¥(4- 3‘”5%3 he

\\\) = - |
\*‘l(i-BwS‘Q\(\—cos@)%& (B 3)

The scattered photon 4 vector is

i i
6{,,190)5'}'
" . .
' | sinG sin (D-14)
< cos©
1
- J

where 6 and T are the polar and azimuthal angles in the
electron rest frame. Next, a reverse rotation transforma-

tion is done to get,

-

sinBeosTcos 8§ + cos T sind _
hv“ S;ha S\A'T' (

—_— - . D-1s

c ~snGcosTsinS 4 cosGsn§ )
A




o DeosT Veos®@-B)+ cosDein @] /Y(1-B cos @)

! SmAd T >-1e)
b_é_?' [S\V\SCD&T é'm"e & c,c.sa K(CMQ‘ﬂ} ] /X(l‘ﬁ c-bs(Qw ( ¢
1

Finally, the inverse of the initial lorentz transform is

used to transform to the lab frame. The momentum is

hvs = W'l 3B | Yeos O _s) -
e 3(1-§3c.°s<e)[x (cest-®)

(D7)
5\1\&&05’]’ 5'\\.\(?] + X )

. ‘EQ Substituting the equation D-13 into D-17 and dividing both

sides by mc yields,

Ols _ 3’(1‘$°"5(€)* szcosa(cu‘-Q- @) +58 SIaS 5iaT 511 4 (b_\g}
X 1+ ¥l 1-Bes Yi-cos© Yoy

Where the change in the origin of 7 changes cos T to sinT.
This is equation 13. This work was done largely by
Dr. Nickel (7) and was presented to give a deeper apprecia-

tion of the origin of equation 13.
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E. Derivation of the Relativistic

Fermi Distribution

When the temperature of a system becomes large
enough the distribution of electrons can no longer be
described by equation 3. An expression for relativistic
fermi distributions is derived to characterize this region.
First, begin with the distribution of electrons when the

gas is nonrelativistic.

_t - TV p* dP -4
® = =i, (&2

Next, replace momentum and energy with the relativistic

equivalents
E= wnoc? (Y-1) le-2)

P= MoV X (E-S\

The distribution function in terms of velocity is

s
Fiv)= 8x¥md v dv -4
) n2 e (mEEF NV, 4 (&-4)

But, v is a function of velocity so using the substitu-

'] b}

tions R

"Q-f

vf:‘ .‘.'
-"-’4 '.‘_
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5 V2= e (e-8) RS

& dv= < _aY <

the distribution of electrons becomes,

TR, e
. N I

IRY= e emdd 3(%1) ay (e-1)
W Ve AT T

- Integrating (E-7) from one to infinity yields the total :?

number of electrons in the system.

: N= F BTV (mc)® __¥VFZ1 dY (E-=) S
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